![[Hackathon] Machine Learning Approaches @ Halle aux Farines, salle 442C](https://www-test.u-pariscite.fr/wp-content/uploads/2023/04/brooke-cagle-uHVRvDr7pg-unsplash-300x169.jpg)
Come and take part in the Graduate School Translational Bioinformatics workshop on machine learning theory applied to problem solving in the medical and biological sciences.This workshop will include both theoretical and practical sessions with multiple examples.
The objective
The focus of the sessions will be on demonstrating the strength of these methods and the scope of application, but also on raising awareness of their limitations. Emphasis will be placed on the importance of managing best practices and using them under the appropriate conditions.
Target Audience
PhD students (or post-docs) and Master’s students interested in training in Machine Learning and/or Deep Learning, applied to biological or biomedical data. This workshop is also open to students in medicine, biology or other courses, with the requirement that they have a basic knowledge of a programming language such as R or Python.
Speakers from Université Paris Cité
- Farah ELLOUZE, Clinical Bioinformatics laboratory, IHU Institut Imagine
- Tatiana GALOCHKINA, DSIMB team, UMR-1134, MCU
- Nicolas GARCELON, Data Science platform and Clinical Bioinformatics laboratory, IHU Institut Imagine
- Jean-Christophe GELLY, DSIMB team, UMR-1134, MCU
- Frédéric GUYON, DSIMB team, UMR-1134, IR
- Romain NICOLLE, Clinical Bioinformatics laboratory, IHU Institut Imagine
- Marc VINCENT, Data Science platform and Clinical Bioinformatics Laboratory, IHU Institut Imagine
Main Topics
Introduction to machine learning and the main concepts of supervised learning: loss function, model optimisation, model evaluation, under-fitting and over-fitting. Introduction to deep learning (DL) and its applications.
Convolution networks and their application to image processing. Practical work on medical images.
Advanced network architectures and language processing models: from recurrent networks to transformers. Entanglement of protein sequences.
Advanced topics in deep learning: graphical neural networks, federated learning, natural language processing (NLP).
Registration is free but mandatory (20 seats available)
This event is organized by Catherine ETCHEBEST (DSIMB team, UMR-1134) and Antonio RAUSELL (Clinical Bioinformatics laboratory, IHU Institut Imagine).
À lire aussi
Call for applications for US Visiting Faculty 2026-2027
Committed to supporting research at the highest level through their partnership, Université Paris Cité and Sciences Po are calling for outstanding applications for visiting faculty from the United States. Apply before January 30, 2026.Candidates selected under a...
read more
Appel à candidatures pour des chercheurs américains à l’Université Paris Cité et Sciences Po
Engagées à soutenir la recherche au plus haut niveau grâce à leur partenariat, l'Université Paris Cité et Sciences Po lancent un appel à candidatures à destination de chercheuses et chercheurs invités en provenance des États-Unis. Déposez votre candidature avant le 30...
read more
Quantum Signals et TUPHO : deux exemples d’innovation quantique à l’Université Paris Cité
2025 est l’année internationale des sciences et technologies quantiques. Dans ce cadre, l’Université Paris Cité revient sur des actions importantes en lien avec le quantique menées en son sein. L’informatique quantique et la physique quantique présentent aujourd’hui...
read more
[REPLAY] Revivez la Masterclasse Histoire avec Robert Darnton
Retrouvez en replay la Masterclasse Histoire avec Robert Darnton qui s’est déroulée le 16 octobre 2025 au Musée Carnavalet-Histoire de Paris. Un événement exceptionnel organisé par le laboratoire ECHELLES avec le soutien de la direction de la communication d’UPCité,...
read more